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Optimization for everybody?

■ O.R. Technology should be for everybody:
 Modelling languages provide simple access to optimization 

technology.
 An increasing set of problems can be solved without expert 

knowledge by applying powerful, generic optimization 
codes.

 Possible applications can be found everywhere...

■ Why has O.R. Technology not yet made it into the 
'ordinary' enterprise application developer's toolkit?



The integration challenge

General purpose
O.R. Systems
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+/Fortran/...)
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■ The integration of O.R. Technology into Enterprise 
Applications ...
 ... requires expert knowledge and
 ... only gets some support by expensive high-end, 

commercial systems.
■ → Applications with simple optimization requirements 

need a simple solution!



Objectives of Grooml

■ A mathematical modelling language that is
 Expressive
 Simple to learn
 Easy to integrate with enterprise applications written in 

Java

■ Use cases:
 Applications where constructing the model is no 

performance bottleneck
 Rapid prototyping
 Teaching



Grooml model = Groovy code

■ Grooml models are real Groovy code:
 Leverage expressiveness of Groovy
 Language easy to learn for Java/Groovy developers
 Direct integration of Java or Groovy business objects
 Access to numerous tools and libraries available in the 

Java+Groovy world
(graph drawing, interfaces to office applications, XML 
import/export, networking, s...)



Why Groovy?

■ Dynamic scripting language
→ supports flexible definition of domain-specific 
languages:
 'Pretended' methods and data members
 Builder pattern
 Categories

■ Full integration with JVM (compiles to Java bytecode)
■ Rich built-in data structures
■ Simple syntax for closures
■ Operator overloading
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swIMP

■ swIMP = SWIG-based Interfaces for Mathematical 
Programming

 Bridges gap between native code and Java through auto-
generated wrappers.

 Based on SWIG (Simple Wrapper and Interface Generator)
 Provides access to OSI-compatible solvers
 Fast performance through special wrapper templates 

(~30% overhead in model construction compared to pure 
C++ code)

 Platforms: Unix* (Cygwin-port for Windows in preparation)

■ More information: swimp.sourceforge.net

http://swimp.sourceforge.net/


Combean

■ Combean = combinatorial optimization + JavaBeans

 Grooml is part of Combean
 Defines a set of interfaces for standard optimization 

problems
 Facilitates integration of optimization codes
 Focus for this talk: Contains an abstraction layer for IP/LP-

models and solvers
 Supports swIMP + some Java-solvers
 100% Java

■ More information: combean.sourceforge.net

http://combean.sourceforge.net/


Open Source modelling languages

■ GNU MathProg
■ Zimpl

 Modelling language similar to AMPL
 No API for integration in applications

■ FlopC++
 Based on C++
 Language style somewhere between 'real' modelling 

languages and C++ API



A simple LP model: Knapsack

intp = new GroomlInterpreter();
intp.load {
   def  items = ["ring", "money", "diamond", "painting", "statue"]
   def  value =

[ring:4, money:2, diamond:10, painting:10, statue:20]
   def  weight =

[ring:1, money:2, diamond:1, painting:5, statue: 20]

   max()
 // Indicator variables for the chosen items
 intvars("x", items) { [value[it], 0..1] }
 // Maximum weight to be carried away
 row("maxweight") {
     sum([i:items]) { weight[i] * x[i] } << 4
   }
 // Choose solver: Coin Cbc
   solver("cbc")
 // Run the MIP solver
   solveMIP()
    
   print “Solution: ${x()}”
}



Grooml interpreter

■ interpreter.load { ... } executes the closure { ... } in a 
special context

 Redirect method calls to the interpreter object (approach 
known as 'builder pattern' is Groovy)

 Maintain 'environment' where variables are bound to 
specific values

 Redirect access to variables to the environment (pretended 
method calls and data elements)

 Add behavior to some built-in types
(mainly: provide additional operators)



Sets

■ Set of values
■ Typically used to bind the values to a variable

■ Based on Groovy built-in types List and Range

■ Examples of elementary sets:
 1 .. 10
 [„mon“, „tue“, „wed“, „thu“, „fri“]



Product Sets

■ Sets support operator '*'

■ Examples:
 (1..2) * [„a“, „b“] is equivalent to

[[1,“a“], [2, „a“], [1, „b“], [2,“b“]]

■ Implemented by:
 Operator overloading
 Categories (technique which allows to add methods to 

predefined classes; here: add multiply() to java.util.List)



Variable Bindings

■ Variable binding =
set + variable to which the elements shall be bound

■ Used for indexing sums, families of rows in the LP, ...

■ Examples:
 [i : 1..2] bind i to the values 1,2
 [i : 1..2] * [j : [„a“,„b“]] bind i,j to (1,a),(1,b),(2,a),(2,b)

■ Based on built-in type Map
(key: variable name, value: set definition)



Dynamic sets

■ Dynamic sets can be defined by closures
■ Definition may refer to variables

■ Example:
 [i : 1..3] * { 1 .. i } is equivalent to

(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)

■ Implemented by:
 Closures
 Pretended data members

(for dynamically defining variable 'i' in the interpreter 
environment)



Definition of LP-variables

■ Command:
vars(<name>, <binding>) {

definition with coeff, domain
}

■ Analogous commands: var, intvar, intvars

■ Examples:
 vars(„x“, 1..10) { it % 2 + 1 }

defines variables x[1], x[2], x[3], x[4] ...
with coefficients 2, 1, 2, 1, ...

 intvars(„y“, [„high“, „low“]) { [1, 0..1] }
defines binary variables y[high] and y[low]



LP-variables and expressions

■ After their definition LP-variables are visible through the 
environment and can be referenced in expressions

■ Example: 2*x[1] – y[2, „foo“]

■ Implemented by:
 Pretended data members (of the interpreter)
 Operator overloading:

➔ Operators '+' and '-' for expressions
➔ Operator '[]' for indexing of variables



Sums

■ Command: sum(<binding>) { <expression> }

■ Examples:
 sum(i : [„alice“, „bob“]) { x[i] }
 sum(i : 1..10, j : -1..1) { (i+j) * q[i,j+1] }

■ Uses: index bindings, expressions of LP-variables
■ Implemented by:

 Pretended data elements (for index binding)
 Dynamic expressions defined by closure



Definition of LP-rows

■ Command: rows(<name>, <binding>) { <row definition> }
■ Analogous command: row

■ Examples:
 row(„foo“) {

sum(i : 1..2) { x[i] } << 10
}

 rows(„coverdays“), [d:weekdays]) {
sum(w:workers) { x[w,d] } | 1

}
■ Note: individual overloading of operators <=, == and >= is 

not possible (constraint in Groovy).



Solving LPs

■ Set direction of optimization: min() or max()
■ Run solver: solve()

■ Access objective value: solutionValue()
■ Access values of variables: by variable name (pretended 

method call)
Examples: x(), y(„mon“), z(1,2)



Knapsack revisited

intp = new GroomlInterpreter();
intp.load {
   def  items = ["ring", "money", "diamond", "painting", "statue"]
   def  value =

[ring:4, money:2, diamond:10, painting:10, statue:20]
   def  weight =

[ring:1, money:2, diamond:1, painting:5, statue: 20]

   max()
 // Indicator variables for the chosen items
 intvars("x", items) { [value[it], 0..1] }
 // Maximum weight to be carried away
 row("maxweight") {
     sum([i:items]) { weight[i] * x[i] } << 4
   }
 // Choose solver: Coin Cbc
   ssolver("cbc")
 // Run the MIP solver
   solveMIP()
    
   print “Solution: ${x()}”
}



Code maturity

■ Alpha-stage:
 Usable for non-critical applications after thorough testing
 Feedback is highly welcome
 No experience with big problems and real world 

applications yet. No dedicated performance tuning done.
■ Combean and Grooml are intensively tested through 

Junit-based automatic test suite:
 High coverage: 86% lines of code

■ Comprehensive documentation:
 Detailed Javadoc and Groovydoc (www.ohloh.net: „well 

commented“)
 Grooml user manual

http://www.ohloh.net/


Getting started

■ Install Coin (OSI + solvers) and swIMP:
 Easiest variant: use package CoinAll 1.0.0 and latest 

version of swIMP (available at swimp.sourceforge.net)

■ Get Grooml at combean.sourceforge.net

■ Get documentation
 User manual and example code
 These slides are available as well...

■ Have fun!

http://www.coin-or.org/download/source/CoinAll/
http://swimp.sourceforge.net/
http://combean.sourceforge.net/
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