Combean/Grooml -
a simple modelling language for the
Java platform

Thomas Schickinger
combean@sourceforge.net

w Optimization for everybody?

®m O.R. Technology should be for everybody:

« Modelling languages provide simple access to optimization
technology.

« An increasing set of problems can be solved without expert

knowledge by applying powerful, generic optimization
codes.

+ Possible applications can be found everywhere...

B \Why has O.R. Technology not yet made it into the
‘'ordinary' enterprise application developer's toolkit?

4

The integration challenge

General purpose
O.R. Systems

Enterprise Applications

Modelling gap

Mathematical models

Business object models

Technical
gap

(Often) special modelling
languages or native
language APIs (C/C+
+/Fortran/...)

Dominated by Java
and .Net

B The integration of O.R. Technology into Enterprise
Applications ...

+ ... requires expert knowledge and

+ ... only gets some support by expensive high-end,
commercial systems.

B _, Applications with simple optimization requirements
need a simple solution!

4

Objectives of Grooml

B A mathematical modelling language that is
+ EXpressive
+ Simple to learn

« Easy to integrate with enterprise applications written in
Java

B Use cases:

+ Applications where constructing the model is no
performance bottleneck

« Rapid prototyping
+ Teaching

! Grooml model = Groovy code

B Groom| models are real Groovy code:
+ Leverage expressiveness of Groovy
« Language easy to learn for Java/Groovy developers
+ Direct integration of Java or Groovy business objects

+ Access to numerous tools and libraries available in the
Java+Groovy world
(graph drawing, interfaces to office applications, XML
import/export, networking, s...)

4

w Why Groovy?

B Dynamic scripting language
— supports flexible definition of domain-specific
languages:
+ 'Pretended' methods and data members
+ Builder pattern
« Categories
® Full integration with JVM (compiles to Java bytecode)
B Rich built-in data structures
B Simple syntax for closures
B Operator overloading

4

System architecture

(Grooml
-8
é/ Combean LP-model and -solver interfaces
i t_(g)
_ =
QSOpt

INI-basec Java/
wrappel Groovy

B swIMP = SWIG-based Interfaces for Mathematical
Programming

- Bridges gap between native code and Java through auto-
generated wrappers.

+ Based on SWIG (Simple Wrapper and Interface Generator)
+ Provides access to OSI-compatible solvers

+ Fast performance through special wrapper templates
(~30% overhead in model construction compared to pure
C++ code)

+ Platforms: Unix* (Cygwin-port for Windows in preparation)

4

® More information: swimp.sourceforge.net

http://swimp.sourceforge.net/

® Combean = combinatorial optimization + JavaBeans

« Grooml is part of Combean

« Defines a set of interfaces for standard optimization
problems

+ Facilitates integration of optimization codes

+ Focus for this talk: Contains an abstraction layer for |IP/LP-
models and solvers

+ Supports swIMP + some Java-solvers
+ 100% Java

B More information: combean.sourceforge.net

4

http://combean.sourceforge.net/

@ Open Source modelling languages

® GNU MathProg

B Zimpl
+ Modelling language similar to AMPL
« No API for integration in applications

m FlopC++
+ Based on C++

+ Language style somewhere between 'real' modelling
languages and C++ API

4

! A simple LP model: Knapsack

intp = new GroomlInterpreter():;
intp.load {
def items = ["ring", "money", "diamond", "painting", "statue"]

def value =
[ring:4, money:2, diamond:10, painting:10, statue:20]

def weight =
[ring:1, money:2, diamond:1, painting:5, statue: 20]

max ()
// Indicator variables for the chosen items

intvars("x", items) { [value[it], O0..1] }
// Maximum weight to be carried away
row ("maxweight'") {
sum([i1:1tems]) { weight[i] * x[1] } << 4
}
// Choose solver: Coin Cbc
solver ("cbc")
// Run the MIP solver
solveMIP ()

print “Solution: S${x()}”

» Grooml interpreter

B interpreter.load { ... } executes the closure { ... } in a
special context

« Redirect method calls to the interpreter object (approach
known as 'builder pattern' is Groovy)

+ Maintain 'environment' where variables are bound to
specific values

+ Redirect access to variables to the environment (pretended
method calls and data elements)

+ Add behavior to some built-in types
(mainly: provide additional operators)

4

m Set of values
B Typically used to bind the values to a variable

m Based on Groovy built-in types List and Range

m Examples of elementary sets:
«1..10
« [,mon®, ,tue®, ,wed", ,thu”, ,fri"]

» Product Sets

m Sets support operator ™

B Fxamples:

« (1..2) " [,a"%, ,b"] is equivalent to
[[1.°a"], [2, ,a"], [1, ,b"], [2,"b7]]

B |[mplemented by:
+ Operator overloading

« Categories (technique which allows to add methods to
predefined classes; here: add multiply() to java.util.List)

4

Variable Bindings

® Variable binding =
set + variable to which the elements shall be bound

m Used for indexing sums, families of rows in the LP, ...

m FExamples:
- [i:1..2] bind i to the values 1,2
- [i:1.21*[: [,a%.,b]] bindi,jto (1,a),(1,b),(2,a),(2,b)

B Based on built-in type Map
(key: variable name, value: set definition)

4

w Dynamic sets

B Dynamic sets can be defined by closures
m Definition may refer to variables

m Example:

« [i:1..3]*{1..1}is equivalent to
(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)

B |mplemented by:
+ Closures

+ Pretended data members
(for dynamically defining variable 'I' in the interpreter
environment)

4

Definition of LP-variables

B Command:
vars(<name>, <binding>) {
definition with coeff, domain

;

B Analogous commands: var, intvar, intvars

m Examples:
« vars(,x“,1.10){it% 2 + 1}
defines variables x[1], x[2], x[3], x[4] ...
with coefficients 2, 1, 2, 1, ...

« intvars(,y", [,high®, ,low"]) { [1, 0..1] }
defines binary variables y[high] and y[low]

LP-variables and expressions

m After their definition LP-variables are visible through the
environment and can be referenced in expressions

m Example: 2*x[1] — y[2, ,foo]

B |[mplemented by:
+ Pretended data members (of the interpreter)

+ Operator overloading:
> Operators '+' and '-' for expressions
> Operator '[]' for indexing of variables

B Command: sum(<binding>) { <expression> }

B Fxamples:
« sum(i : [,alice”, ,bob™]) { x[i] }
« sum(i:1..10,j:-1.1){(i+)) * q[i,j+1] }

m Uses: index bindings, expressions of LP-variables
B |mplemented by:

+ Pretended data elements (for index binding)

+ Dynamic expressions defined by closure

Definition of LP-rows

B Command: rows(<name>, <binding>) { <row definition> }
® Analogous command: row

m Examples:

+ row(,foo") {
sum(i: 1..2) {x[i] } << 10
}

+ rows(,coverdays”), [d:weekdays]) {
sum(w:workers) { x[w,d] } | 1

}

®m Note: individual overloading of operators <=, == and >=is

not possible (constraint in Groovy).

B Set direction of optimization: min() or max()
B Run solver: solve()

m Access objective value: solutionValue()

m Access values of variables: by variable name (pretended
method call)
Examples: x(), y(,mon®), z(1,2)

4

! Knapsack revisited

intp = new GroomlInterpreter():;
intp.load {
def items = ["ring", "money", "diamond", "painting", "statue"]

def value =
[ring:4, money:2, diamond:10, painting:10, statue:20]

def weight =
[ring:1, money:2, diamond:1, painting:5, statue: 20]

max ()
// Indicator variables for the chosen items

intvars("x", items) { [value[it], O0..1] }
// Maximum weight to be carried away
row ("maxweight'") {
sum([i1:1tems]) { weight[i] * x[1] } << 4
}
// Choose solver: Coin Cbc
ssolver ("cbc™)
// Run the MIP solver
solveMIP ()

print “Solution: S${x()}”

! Code maturity

B Alpha-stage:
« Usable for non-critical applications after thorough testing
« Feedback is highly welcome

+ No experience with big problems and real world
applications yet. No dedicated performance tuning done.

® Combean and Grooml are intensively tested through
Junit-based automatic test suite:

+ High coverage: 86% lines of code
B Comprehensive documentation:
+ Detailed Javadoc and Groovydoc (www.ohloh.net: ,well

commented®)

+ Grooml user manual

http://www.ohloh.net/

w Getting started

m |nstall Coin (OSI + solvers) and swliMP:

+ Easiest variant: use package CoinAll 1.0.0 and latest
version of swIMP (available at swimp.sourceforge.net)

B Get Grooml at combean.sourceforge.net

B Get documentation
« User manual and example code
+ These slides are available as well...

® Have fun!

http://www.coin-or.org/download/source/CoinAll/
http://swimp.sourceforge.net/
http://combean.sourceforge.net/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

