
Combean/Grooml -
a simple modelling language for the

Java platform

Thomas Schickinger
combean@sourceforge.net

Optimization for everybody?

■ O.R. Technology should be for everybody:
 Modelling languages provide simple access to optimization

technology.
 An increasing set of problems can be solved without expert

knowledge by applying powerful, generic optimization
codes.

 Possible applications can be found everywhere...

■ Why has O.R. Technology not yet made it into the
'ordinary' enterprise application developer's toolkit?

The integration challenge

General purpose
O.R. Systems

Enterprise Applications

Modelling gap Mathematical models Business object models
Technical
gap

(Often) special modelling
languages or native
language APIs (C/C+
+/Fortran/...)

Dominated by Java
and .Net

■ The integration of O.R. Technology into Enterprise
Applications ...
 ... requires expert knowledge and
 ... only gets some support by expensive high-end,

commercial systems.
■ → Applications with simple optimization requirements

need a simple solution!

Objectives of Grooml

■ A mathematical modelling language that is
 Expressive
 Simple to learn
 Easy to integrate with enterprise applications written in

Java

■ Use cases:
 Applications where constructing the model is no

performance bottleneck
 Rapid prototyping
 Teaching

Grooml model = Groovy code

■ Grooml models are real Groovy code:
 Leverage expressiveness of Groovy
 Language easy to learn for Java/Groovy developers
 Direct integration of Java or Groovy business objects
 Access to numerous tools and libraries available in the

Java+Groovy world
(graph drawing, interfaces to office applications, XML
import/export, networking, s...)

Why Groovy?

■ Dynamic scripting language
→ supports flexible definition of domain-specific
languages:
 'Pretended' methods and data members
 Builder pattern
 Categories

■ Full integration with JVM (compiles to Java bytecode)
■ Rich built-in data structures
■ Simple syntax for closures
■ Operator overloading

System architecture

Clp SYMPHONY CPLEX...

OSI

swIMP

QSOpt

Combean LP-model and -solver interfaces

Grooml

...

GLPK

Native code JNI-based
wrapper

Java/
Groovy

swIMP

■ swIMP = SWIG-based Interfaces for Mathematical
Programming

 Bridges gap between native code and Java through auto-
generated wrappers.

 Based on SWIG (Simple Wrapper and Interface Generator)
 Provides access to OSI-compatible solvers
 Fast performance through special wrapper templates

(~30% overhead in model construction compared to pure
C++ code)

 Platforms: Unix* (Cygwin-port for Windows in preparation)

■ More information: swimp.sourceforge.net

http://swimp.sourceforge.net/

Combean

■ Combean = combinatorial optimization + JavaBeans

 Grooml is part of Combean
 Defines a set of interfaces for standard optimization

problems
 Facilitates integration of optimization codes
 Focus for this talk: Contains an abstraction layer for IP/LP-

models and solvers
 Supports swIMP + some Java-solvers
 100% Java

■ More information: combean.sourceforge.net

http://combean.sourceforge.net/

Open Source modelling languages

■ GNU MathProg
■ Zimpl

 Modelling language similar to AMPL
 No API for integration in applications

■ FlopC++
 Based on C++
 Language style somewhere between 'real' modelling

languages and C++ API

A simple LP model: Knapsack

intp = new GroomlInterpreter();
intp.load {
 def items = ["ring", "money", "diamond", "painting", "statue"]
 def value =

[ring:4, money:2, diamond:10, painting:10, statue:20]
 def weight =

[ring:1, money:2, diamond:1, painting:5, statue: 20]

 max()
 // Indicator variables for the chosen items
 intvars("x", items) { [value[it], 0..1] }
 // Maximum weight to be carried away
 row("maxweight") {
 sum([i:items]) { weight[i] * x[i] } << 4
 }
 // Choose solver: Coin Cbc
 solver("cbc")
 // Run the MIP solver
 solveMIP()

 print “Solution: ${x()}”
}

Grooml interpreter

■ interpreter.load { ... } executes the closure { ... } in a
special context

 Redirect method calls to the interpreter object (approach
known as 'builder pattern' is Groovy)

 Maintain 'environment' where variables are bound to
specific values

 Redirect access to variables to the environment (pretended
method calls and data elements)

 Add behavior to some built-in types
(mainly: provide additional operators)

Sets

■ Set of values
■ Typically used to bind the values to a variable

■ Based on Groovy built-in types List and Range

■ Examples of elementary sets:
 1 .. 10
 [„mon“, „tue“, „wed“, „thu“, „fri“]

Product Sets

■ Sets support operator '*'

■ Examples:
 (1..2) * [„a“, „b“] is equivalent to

[[1,“a“], [2, „a“], [1, „b“], [2,“b“]]

■ Implemented by:
 Operator overloading
 Categories (technique which allows to add methods to

predefined classes; here: add multiply() to java.util.List)

Variable Bindings

■ Variable binding =
set + variable to which the elements shall be bound

■ Used for indexing sums, families of rows in the LP, ...

■ Examples:
 [i : 1..2] bind i to the values 1,2
 [i : 1..2] * [j : [„a“,„b“]] bind i,j to (1,a),(1,b),(2,a),(2,b)

■ Based on built-in type Map
(key: variable name, value: set definition)

Dynamic sets

■ Dynamic sets can be defined by closures
■ Definition may refer to variables

■ Example:
 [i : 1..3] * { 1 .. i } is equivalent to

(1,1), (2,1), (2,2), (3,1), (3,2), (3,3)

■ Implemented by:
 Closures
 Pretended data members

(for dynamically defining variable 'i' in the interpreter
environment)

Definition of LP-variables

■ Command:
vars(<name>, <binding>) {

definition with coeff, domain
}

■ Analogous commands: var, intvar, intvars

■ Examples:
 vars(„x“, 1..10) { it % 2 + 1 }

defines variables x[1], x[2], x[3], x[4] ...
with coefficients 2, 1, 2, 1, ...

 intvars(„y“, [„high“, „low“]) { [1, 0..1] }
defines binary variables y[high] and y[low]

LP-variables and expressions

■ After their definition LP-variables are visible through the
environment and can be referenced in expressions

■ Example: 2*x[1] – y[2, „foo“]

■ Implemented by:
 Pretended data members (of the interpreter)
 Operator overloading:

➔ Operators '+' and '-' for expressions
➔ Operator '[]' for indexing of variables

Sums

■ Command: sum(<binding>) { <expression> }

■ Examples:
 sum(i : [„alice“, „bob“]) { x[i] }
 sum(i : 1..10, j : -1..1) { (i+j) * q[i,j+1] }

■ Uses: index bindings, expressions of LP-variables
■ Implemented by:

 Pretended data elements (for index binding)
 Dynamic expressions defined by closure

Definition of LP-rows

■ Command: rows(<name>, <binding>) { <row definition> }
■ Analogous command: row

■ Examples:
 row(„foo“) {

sum(i : 1..2) { x[i] } << 10
}

 rows(„coverdays“), [d:weekdays]) {
sum(w:workers) { x[w,d] } | 1

}
■ Note: individual overloading of operators <=, == and >= is

not possible (constraint in Groovy).

Solving LPs

■ Set direction of optimization: min() or max()
■ Run solver: solve()

■ Access objective value: solutionValue()
■ Access values of variables: by variable name (pretended

method call)
Examples: x(), y(„mon“), z(1,2)

Knapsack revisited

intp = new GroomlInterpreter();
intp.load {
 def items = ["ring", "money", "diamond", "painting", "statue"]
 def value =

[ring:4, money:2, diamond:10, painting:10, statue:20]
 def weight =

[ring:1, money:2, diamond:1, painting:5, statue: 20]

 max()
 // Indicator variables for the chosen items
 intvars("x", items) { [value[it], 0..1] }
 // Maximum weight to be carried away
 row("maxweight") {
 sum([i:items]) { weight[i] * x[i] } << 4
 }
 // Choose solver: Coin Cbc
 ssolver("cbc")
 // Run the MIP solver
 solveMIP()

 print “Solution: ${x()}”
}

Code maturity

■ Alpha-stage:
 Usable for non-critical applications after thorough testing
 Feedback is highly welcome
 No experience with big problems and real world

applications yet. No dedicated performance tuning done.
■ Combean and Grooml are intensively tested through

Junit-based automatic test suite:
 High coverage: 86% lines of code

■ Comprehensive documentation:
 Detailed Javadoc and Groovydoc (www.ohloh.net: „well

commented“)
 Grooml user manual

http://www.ohloh.net/

Getting started

■ Install Coin (OSI + solvers) and swIMP:
 Easiest variant: use package CoinAll 1.0.0 and latest

version of swIMP (available at swimp.sourceforge.net)

■ Get Grooml at combean.sourceforge.net

■ Get documentation
 User manual and example code
 These slides are available as well...

■ Have fun!

http://www.coin-or.org/download/source/CoinAll/
http://swimp.sourceforge.net/
http://combean.sourceforge.net/

	Folie 1
	Folie 2
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	Folie 24

